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Abstract. A constant weight codeword is a binary n-tuple with exactly
r 1’s. We show two circuits that generate constant weight codewords. The
first is based on the combinatorial number system. Its input is an index
to the codeword. That is, there are

(
n
r

)
n-bit codewords with exactly

r 1’s. The index generates a unique codeword, and is a binary number
between 0 and

(
n
r

)−1. Such a circuit is useful for encoding data. If a ran-
dom constant weight codeword is needed, as in Monte Carlo simulations,
then the index is random. If a random constant weight codeword only is
needed, then our other circuit is even more compact. It is based on a trel-
lis configuration. Both designs can be pipelined to produce one constant
weight codeword per clock period. We give experimental results showing
the efficiency of our designs on the SRC-6 reconfigurable computer.

1 Introduction

The generation of an arbitrary n-bit binary word with a fixed weight r (number
of 1’s) is surprisingly difficult. It is convenient to describe such a word as a
constant weight codeword, even when discussing a non-coding application.

A constant weight code generator is useful in the enumeration of bent Boolean
functions by reconfigurable computer [4, 20]. Bent functions are used in crypto-
graphic applications because they are resilient to a linear attack. It is known
that the truth tables of n-variable bent functions have one of only two weights,
2n−1±2n/2−1 [16]. Therefore, instead of testing all 22n

n-variable truth tables for
bentness, it is sufficient to enumerate only functions with these weights. Because
the search space of this reduced space is still large, one seeks a Monte Carlo
approach, in which random binary numbers, representing truth tables with a
fixed number of 1’s, are generated.

We have used the constant weight codeword generator in the enumeration
of Boolean functions by reconfigurable computer to determine their correlation
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2 High-Speed Constant Weight Codeword Generator

immunity [6]. Correlation immunity is a cryptographic property of Boolean func-
tions used in encryption/decryption to determine the extent to which the input
values can be determined from the output value. We were able to test one func-
tion in each clock period because the index to constant weight code converters
shown here can process at one constant weight code per clock period.

Such circuits have application in other areas. For example, Yamanaka, Shimizu,
and Shan [23] program the lexicographical generation of constant weight code-
words on a reconfigurable computer to analyze energy efficient networks. Bal-
anced codes, in which there are as many 0’s as 1’s, are useful for encoding data
transferred on and off VLSI chips in a way that minimizes the current fluctua-
tion during switching [21]. In other instances of VLSI data transfer, codes with
small weight are desired because they yield faster and more compact circuits
[21]. Constant weight codes are a countermeasure to “side-channel” attacks [8].
Such attacks use data dependent differences in power consumption to extract
secret information. Constant weight codes have been used in asynchronous logic
as a means to implement delay-insensitive codes [22]. Three-out-of-six and two-
out-of-seven constant weight codes have been used to build a parallel processor
for neural simulation [9].

The generation of constant weight codewords in lexicographic order has re-
ceived much attention spanning 40 years (c.f. [14]). One of the earliest contri-
butions, Gosper’s “Hack” [7], is an elegant sequence of basic instructions that
can be easily programmed (see also Knuth’s MMIX version [10]). The output is
a sequence of constant weight codewords whose binary number representation
increases each time a codeword is generated. Both normal and reverse lexico-
graphical sequences are useful in heuristics for the generation of sets of codewords
with large cardinality [15]. That is, the generation of codewords in either normal
or reverse lexicographical order is useful in producing large sets of codewords
each a minimum Hamming distance from all other codewords in the set. In-
terestingly, this bin-packing problem, in which one seeks the largest number of
constant weight codewords each no less than a specified Hamming distance from
another codeword, has remained unsolved for 50 years [1, 13].

Unfortunately, Gosper’s Hack is not able to convert an index to a constant
weight code corresponding to that index. Thus, it cannot be used in an encoding
algorithm for constant weight codewords or in a Monte Carlo simulation. In both
cases, there is a need to freely choose the sequence of constant weight codewords.
A software version of such an encoding algorithm was developed more than 30
years ago [2], but as far as we know, a hardware implementation has never been
reported.

We correct this deficiency in this paper. For example, there are
(
6
3

)
= 20

6-bit codewords with exactly three 1’s. These can be indexed by a five bit index,
whose value ranges from 0 to 19. The index values 20 through 31 are unused. In
a coding application, the index will be determined by the plaintext message. In
a Monte Carlo simulation, there is an issue related to the index value because
typical random number generators produce a value from 0 to 2n− 1. We discuss
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how to deal with this mismatch. Our architecture is a LUT cascade and is simple.
Yet, it produces one constant weight codeword every clock period.

In Section 2, we discuss the combinatorial number system. We show how
it can be used to generate constant weight codes, and we discuss its circuit
implementation. Then, in Section 3, we discuss a trellis circuit for computing
random constant weight codewords and compare its complexity/speed with that
derived from the combinatorial number system. The trellis circuit is an especially
efficient way to generate random constant weight codes. Finally, in Section 4, we
give concluding remarks.

2 The Combinatorial Number System

2.1 Introduction

As in the standard binary number system, in the combinatorial number system,
each number is represented by a unique vector of basis values.

Definition 1 In an
(
n
r

)
combinatorial number system [11], integer N <

(
n
r

)
is represented as N = crcr−1 . . . c1, where

N =
(

cr

r

)
+

(
cr−1

r − 1

)
+ . . . +

(
c1

1

)
, (1)

such that cr > cr−1 > . . . > c1 ≥ 0.

Example 1 Table 1 shows the representation of numbers in the
(
6
3

)
combina-

torial number system, where 010 ≤ N ≤ 1910. The rightmost column of Table 1
shows the 6 bit constant weight code corresponding to N . The constant weight,
in this example, is 3, as there are three 1’s in each word. Note that the three
elements of the vector representation of N correspond to the position of the 1 in
the constant weight codeword. For example, 1910 or 543 corresponds to 111000,
while 010 or 210 corresponds to 000111.

(End of Example)

We can make the following observations.

1. Regardless of N , each representation has exactly r “digits” (vector elements).
For example, a

(
7
3

)
combinatorial number system also has three “digits”.

However, the basis values are larger than those in a
(
6
3

)
combinatorial number

system.
2. Each set of digits, such that c3 > c2 > c1 ≥ 0, corresponds to a unique

value of N . Each value of N corresponds to a unique set of digits, such that
c3 > c2 > c1 ≥ 0. It can be seen to be true in this example. This was proven
to hold in a general

(
n
r

)
combinatorial number system by Lehmer [12].

3. Given N , a greedy algorithm derives cr cr−1 . . . c1. For example, in Table
1, the first digit for 1910 can be obtained by finding the largest c3, such that(
c3
3

) ≤ 1910. Since
(
2
3

)
= 010,

(
3
3

)
= 110,

(
4
3

)
= 410,

(
5
3

)
= 1010,

(
6
3

)
= 2010, . . .,

c3 = 510. Similarly, we seek the largest c2 such that
(
c2
2

) ≤ 1910−1010 = 910,
etc.
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Table 1. The
(
6
3

)
Combinatorial Number System for 010 ≤ N ≤ 1910

N c3 c2 c1 Value of N Constant Weight

for k = 3 for k = 3 Codeword

1910 5 4 3
(
5
3

)
+

(
4
2

)
+

(
3
1

)
= 10 + 6 + 3 111000

1810 5 4 2
(
5
3

)
+

(
4
2

)
+

(
2
1

)
= 10 + 6 + 2 110100

1710 5 4 1
(
5
3

)
+

(
4
2

)
+

(
1
1

)
= 10 + 6 + 1 110010

1610 5 4 0
(
5
3

)
+

(
4
2

)
+

(
0
1

)
= 10 + 6 + 0 110001

1510 5 3 2
(
5
3

)
+

(
3
2

)
+

(
2
1

)
= 10 + 3 + 2 101100

1410 5 3 1
(
5
3

)
+

(
3
2

)
+

(
1
1

)
= 10 + 3 + 1 101010

1310 5 3 0
(
5
3

)
+

(
3
2

)
+

(
0
1

)
= 10 + 3 + 0 101001

1210 5 2 1
(
5
3

)
+

(
2
2

)
+

(
1
1

)
= 10 + 1 + 1 100110

1110 5 2 0
(
5
3

)
+

(
2
2

)
+

(
0
1

)
= 10 + 1 + 0 100101

1010 5 1 0
(
5
3

)
+

(
1
2

)
+

(
0
1

)
= 10 + 0 + 0 100011

910 4 3 2
(
4
3

)
+

(
3
2

)
+

(
2
1

)
= 4 + 3 + 2 011100

810 4 3 1
(
4
3

)
+

(
3
2

)
+

(
1
1

)
= 4 + 3 + 1 011010

710 4 3 0
(
4
3

)
+

(
3
2

)
+

(
0
1

)
= 4 + 3 + 0 011001

610 4 2 1
(
4
3

)
+

(
2
2

)
+

(
1
1

)
= 4 + 1 + 1 010110

510 4 2 0
(
4
3

)
+

(
2
2

)
+

(
0
1

)
= 4 + 1 + 0 010101

410 4 1 0
(
4
3

)
+

(
1
2

)
+

(
0
1

)
= 4 + 0 + 0 010011

310 3 2 1
(
3
3

)
+

(
2
2

)
+

(
1
1

)
= 1 + 1 + 1 001110

210 3 2 0
(
3
3

)
+

(
2
2

)
+

(
0
1

)
= 1 + 1 + 0 001101

110 3 1 0
(
3
3

)
+

(
1
2

)
+

(
0
1

)
= 1 + 0 + 0 001011

010 2 1 0
(
2
3

)
+

(
1
2

)
+

(
0
1

)
= 0 + 0 + 0 000111

2.2 Circuit Implementation

The keystone of our contribution is a circuit that produces constant weight
codewords from an index that is an implementation of an

(
n
r

)
combinatorial

number system. Consider, for example, the generation of 6-bit binary words
with three 1’s. Let index be a 5-bit index whose value specifies which of these
codewords is produced. There are

(
6
3

)
= 20 codewords, which we assume are

specified by 0 ≤ index ≤ 19. Let output be a vector of six bits ordered as
output(5) output(4) output(3) output(2) output(1) output(0), three of which are
1 and three of which are 0’s. The pseudo-code for this circuit is as follows.

Set output := 000000.

IF index ≥ (
5
3

)
= 10, Set output(5) := 1 and index := index− 10.

ELSEIF index ≥ (
4
3

)
= 4, Set output(4) := 1 and index := index− 4.

ELSEIF index ≥ (
3
3

)
= 1, Set output(3) := 1 and index := index− 1.

ELSEIF index ≥ (
2
3

)
= 0, Set output(2) := 1 and index := index− 0.
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IF index ≥ (
4
2

)
= 6, Set output(4) := 1 and index := index− 6.

ELSEIF index ≥ (
3
2

)
= 3, Set output(3) := 1 and index := index− 3.

ELSEIF index ≥ (
2
2

)
= 1, Set output(2) := 1 and index := index− 1.

ELSEIF index ≥ (
1
2

)
= 0, Set output(1) := 1 and index := index− 0.

IF index ≥ (
3
1

)
= 3, Set output(3) := 1 and index := index− 3.

ELSEIF index ≥ (
2
1

)
= 2, Set output(2) := 1 and index := index− 2.

ELSEIF index ≥ (
1
1

)
= 1, Set output(1) := 1 and index := index− 1.

ELSEIF index ≥ (
0
1

)
= 0, Set output(0) := 1 and index := index− 0.

Each of the three IF statements corresponds to the generation of one 1 bit
in the codeword, where the first generates the leftmost 1 bit, the second the
middle 1 bit and the third the rightmost 1 bit. Fig. 1 shows the circuit that
computes the description above. index comes in from the left, and output exits
to the right. Between is a circuit that performs the four operations above. This
includes testing the index against a threshold and then performing two opera-
tions. The first sets the output to an appropriate value and the second subtracts
an appropriate value from the index and passes it on to the next stage, which
performs a similar operation. Note that this circuit can be implemented as an
r-stage cascade of combinational circuits [17].
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Fig. 1. Example of a Constant Weight Codeword Generator Circuit.

At each stage, there are inputs and outputs that carry a partially completed
output. Also, there are inputs and outputs that carry index reduced by the values
contributed by higher order digits. The rightmost stage produces a 0 value at
its index output, since there are no digits to the right.

Note that this is easily pipelined. Pipeline registers can simply be inserted
between stages. Doing so, causes the latency to be r, the weight. Note that, after
the first codeword emerges, a codeword emerges at each clock period.
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2.3 Results

Fig. 2 shows the result of a program on the SRC-6 reconfigurable computer to
produce random constant weight codewords. The SRC-6 uses the Xilinx Vir-
tex2p XC2VP100 FPGA with Package FF1696 and Speed Grade -5. Here, the
distribution of constant weight codes with n = 6 bits and r = 3 1’s is plotted. A
total of 1,048,576 (= 220) 64-bit random numbers were generated and converted
into random integers from 0 to 19 and applied as indices to the constant weight
code generator. For example, the leftmost bar in Fig. 2 corresponds to 52,079
codewords of the form 000111 (=7), and the rightmost bar corresponds to 52,285
codewords of the form 111000 (=56).

0 8 16 24 32 40 48 56 64
30,000

40,000

50,000

60,000

Decimal value of codewords produced

N
u
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b
e
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c
o
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e
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Fig. 2. Distribution of Constant Weight Codewords Produced By the Combinatorial
Number System.

The circuit that produced the results in Fig. 2 is shown in Fig. 3. If the
index is a uniformly distributed random integer over the range 010 ≤ N ≤ 1910,
then the output is a uniformly distributed set of constant weight codewords.
However, if index is uniformly distributed over the full range of 5-bit binary
numbers, as is common, then 12 index values have no corresponding constant
weight code. We propose to handle this with a random number to random integer
converter. In this case, we view the random number generator as producing R,
where 0 ≤ R < 1. For example, if the random number generator has 8 bits, then
its output is viewed as 0.0000000 ≤ R ≤ 0.11111111 < 1. To produce a random
integer of value i, where 0 ≤ i ≤ v − 1, we form v × R, which can be achieved
by integer multiplication of v times the 8 bit integer associated with R following
by a division by 256, which corresponds to a right shift by 8 bits. The product
vR involves multiplication by a constant. This is done quickly by addition, shift,
and truncate. Fig. 3 shows the circuit that realizes this. Note that the random
number to random integer converter (i.e. domain converter) consists of all blocks
in Fig. 3 except the CWC Generator.

The complete circuit uses 2,880 out of 88,192 4-input LUTs (3%) and 3,804
out of 88,192 slice flip-flops (4%). It can run at 100.1 MHz, which is slightly
greater than the SRC-6’s operating frequency of 100 MHz. The random number
generator is a cellular automata system proposed by Shackleford, Tanaka, Carter,
and Snider [19]. As shown in Fig. 3, this is multiplied by v (in this specific
example, v = 20). The product is right shifted by 64 bits and truncated. The
result is a uniformly distributed random integer from 0 to 19. This is applied to
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Fig. 3. Block Diagram of a Random Constant Weight Code Generator.

the CWC Generator in Fig. 3, which produces the corresponding constant weight
code. A random constant weight codeword is produced at each clock period of
the SRC-6’s 100 MHz clock. This accounts for 1,048,576 clock periods. However,
a total of 1,048,770 clock periods are required. This includes 194 additional clock
periods for initialization, data collection, and overhead. Neglecting the overhead,
this constant weight codeword generator produces 100 million codewords per
second. A C code version of the circuit in Fig. 3 was written and run on the SRC-
6’s 2.8 GHz Xeon microprocessor. Despite its much higher clock frequency, this
implementation produced only 7.6 million random constant weight codewords
per second.

2.4 Complexity of Implementation

To understand how the complexity of a
(
n
r

)
combinatorial number system con-

stant weight code generator depends on n and r, we programmed this system for
various n and r. Because the SRC-6, with its 130 nm Xilinx Virtex 2p XC2VP100,
is a legacy system, we chose the 40 nm Altera Stratix IV EP4SE530F43C3NES
FPGA. This is to be used on the SRC Company’s newest version of the SRC-7.
Table 2 shows the frequency obtained and the resources used in this implementa-
tion. A large codeword is achievable (128 bits using 91% of the available ALMs).
Although this table shows only balanced constant weight code generators where
the number of bits is a power of 2, our approach applies to any number of bits
and to any weight.

The second column in Table 2 also shows the number of bits needed to
represent index. Recall that index must be sufficiently large so that all

(
n
r

)
values of the index can be uniquely represented. Specifically, the number of
bits needed is blog2

(
n
r

)c + 1. A naive description in which this was computed
as blog2

n!
r!(n−r)!c + 1 was not able to give correct results for the bottom half

of the table because of the very large value of n!. Therefore, this computation
was performed as b∑n

i=1 log2i− 2
∑n/2

i=1 log2ic+ 1. The Verilog compiler used to
implement the circuits lacks the word size to compute n! for moderate n. Also, it
is not capable of computing the log2 function. Instead, a MATLAB program was
used. This produced values that were written to a header file that was included
in the Verilog code. Similarly, to realize the circuits represented in Table 2, it
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Table 2. Frequency and resources used to realize combinatorial number system con-
stant weight code generators on the Altera Stratix IV EP4SE530F43C3NES FPGA.

Con. Wgt. #Bits Freq. # of LUTs of Various Inputs Est. # of Total # of

Code
(

n
r

)
index (MHz) 7- 6- 5- 4- 3- Packed ALMs Registers

(
4
2

)
3 406.3 0 0 0 1 8 5(0%) 10(0%)(

8
4

)
7 310.2 0 0 23 30 14 37(0%) 47(0%)(

16
8

)
14 213.9 0 40 112 153 66 211(0%) 198(0%)(

32
16

)
30 179.7 2 453 719 915 377 1,461(0%) 842(0%)(

64
32

)
61 129.5 45 880 983 2,709 44,873 25,428(11%) 3,443(0%)(

128
64

)
125 95.8 163 1,422 15,902 14,551 354,448 194,950(91%) 430,608(3%)

was necessary to compute
(
n
r

)
, which cannot be realized by 32 bits for moderate

values of n and r. Another MATLAB program was written that computed these
values and printed them to a header file that was included in the Verilog code.

3 Trellis Generator

3.1 Introduction

An alternative approach for generating random constant weight binary num-
bers is the trellis circuit. We know of no prior work on this approach except a
description in a Japanese book [18] of a program to generate random constant
weight codes. A hardware implementation of this is as follows. Fig. 4 shows the
trellis circuit of a random constant-weight binary number generator with 6 bits
of weight 3. Each bit is generated one at a time starting at top. A complete n-bit
number is generated after n clock periods. However, this circuit is pipelined, so
that thereafter, a 6-bit binary number of weight 3 is generated at every clock
period.

At the top node, the left bit is 0/1 with probability 50%/50%. Depending
on this bit’s actual value, control goes to the node labeled

(
5
3

)
(0) or the node

labeled
(
5
2

)
(1). At this point, a similar process takes place. In this case, the

probability of a 0 or 1 bit adjusts so that each n-bit number of weight r has the
same probability as any other n-bit number of weight r. In the case of the node
labeled

(
5
3

)
, 0 and 1 are generated with probability 40% and 60%, while, in the

case of the node labeled
(
5
2

)
, 0 and 1 are generated with probability 60% and

40%.
The probabilities required for each level are generated by the circuit along

the right side of Fig. 4. This circuit generates an integer between 0 and m−1 > 1,
where m is the level. The top level corresponds to m = n, the next lower level
to m = n − 1, etc.. The nodes in the trellis then convert this number into a
0 or 1, as needed at that node. For example, for m = 4, the right-side integer
generator produces 0, 1, 2, and 3 with equal probability. For the node labeled(
4
3

)
, a threshold of 1 is used to produce 0 with a probability of 25% (0) and
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Fig. 4. Trellis Circuit.

1 with a probability of 75% (1, 2, and 3). Similarly, the nodes labeled
(
4
2

)
and(

4
1

)
use thresholds 2 and 3, respectively. We note that the generation of one

uniformly distributed integer at level n is sufficient because only one bit of a
random constant-weight binary number is generated at that level.

3.2 Circuit Implementation

The trellis can be implemented by a pipeline with n stages. In each stage, the
(partially completed) constant weight code is processed and passed to the next
stage, as suggested by the words shown along the right side of Fig. 4. Fig. 5
shows the pipeline implementation of the trellis circuit. The block labeled RNG
(random number generator) in each stage determines exactly one bit. Whether
it is a 0 or 1 is determined at random by a probability that depends on the
number of 1 bits generated so far. For example, if all of the r 1 bits occur in the
previous stages, then the probability that a 0 is produced by RNG is 100%.

3.3 Results

Fig. 6 shows the distribution of constant weight codes when 1,048,576 (= 220)
sets of random numbers are generated and applied to the trellis circuit. This was
programmed on the SRC-6. For the Xilinx Virtex2p XC2VP100 FPGA used in
this system, the complete circuit uses 2,767 out of 88,192 4-input LUTs (3%)
and 3,795 out of 88,192 slice flip-flops (4%). It can run at 106.2 MHz, which ac-
commodates the SRC-6’s fixed 100 MHz clock. It produces one constant weight
codeword at each 100 MHz clock cycle, and takes a total of 1,048,766 clock cy-
cles. This includes 90 clock periods in addition to those 1,048,576 clock cycles
that each produce a constant weight codeword. Each level in the trellis uses a
16 bit random number generator that creates a random integer generator, as de-
scribed above. Note that the resources just described include circuits needed to
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Fig. 5. Block Diagram of the Trellis Constant Weight Code Generator.

implement overhead functions like data collection. Neglecting the overhead, the
trellis random constant weight codeword generator produces 100 million code-
words per second. A C code version of the circuit in Fig. 5 was written and run
on the SRC-6’s 2.8 GHz Xeon microprocessor. Despite its much higher clock fre-
quency, this implementation produced only 57.2 million random constant weight
codewords per second.

0 8 16 24 32 40 48 56 64
30,000

40,000

50,000

60,000

Decimal value of codewords produced

N
u
m

b
e
r 

o
f 

c
o
d
e
w

o
rd

s

Fig. 6. Distribution of Constant Weight Codewords Produced by the Trellis Circuit.

3.4 Complexity of Implementation

Like the combinatorial number system constant weight codeword generator, the
trellis was programmed on the Altera Stratix IV EP4SE530F43C3NES FPGA.
Table 3 shows the resource usage and frequency for various types of constant
weight codewords. Unlike the combinatorial number system constant weight
codeword generator, 256-bit constant weight codewords with 128 1’s can be easily
implemented within one FPGA. The Estimated Number of ALMs increases by
a factor of more than 2 for each one line advance in Table 3. A similar statement
is approximately true of the column labeled Total Number of Registers. The
resources shown in Table 3 do not cover the circuits that perform the overhead
functions, such as data collection; they include only the trellis circuit.
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Table 3. Frequency and resources used to realize a trellis constant weight code gener-
ator on the Altera Stratix IV EP4SE530F43C3NES FPGA.

Con. Wgt. Freq. # of LUTs of Various Inputs Est. # of Total # of

Code
(

n
r

)
(MHz) 7- 6- 5- 4- 3- Packed ALMs Registers

(
4
2

)
487.6 0 0 1 24 83 42 (0%) 65 (0%)(

8
4

)
463.8 0 0 19 12 71 122 (0%) 172 (0%)(

16
8

)
344.4 0 6 28 33 281 358 (0%) 444 (0%)(

32
16

)
274.2 0 31 96 101 765 978 (0%) 1,137 (0%)(

64
32

)
250.2 0 71 289 365 1,994 2,839 (1%) 3,387 (0%)(

128
64

)
231.1 1 301 908 941 4,673 5,344 (2%) 4,691 (1%)(

256
128

)
174.9 1 2,757 2,363 10,653 4,673 11,309 (5%) 8,011 (1%)

4 Concluding Remarks

Although there is a need for a circuit that computes constant weight codewords
from indices, we have not seen an implementation. Our results are useful, for
example, in the encoding/decoding of data, such as between on-chip and off-
chip and in asynchronous circuits. We show two approaches 1) a combinatorial
number system implementation and a 2) trellis implementation. The combina-
torial number system can be implemented as a pipeline producing a constant
weight codeword at each clock. For a constant weight code of n bits, of which
r are 1, the pipeline is r stages long. If one only wants to produce random con-
stant weight codewords, for example in Monte Carlo simulations, the trellis is
also implemented efficiently. Its pipeline is n stages long. The trellis requires
less resources and operates at a higher frequency. We have implemented both
designs on the SRC-6 reconfigurable computer and on an Altera Stratix IV
EP4SE530F43C3NES FPGA. This has shown that both are efficiently imple-
mented.

We remark on two extensions of our results. First, both circuits can be im-
plemented as combinational logic. Indeed, the diagrams, Figs. 1 and 5, show
them as combinational logic. Second, in both circuits, the probability of certain
codewords can be controlled.
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